Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798157

RESUMO

In defiance of the paradigm that calories from all sources are equivalent, we and others have shown that dietary protein is a dominant regulator of healthy aging. The restriction of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan when initiated in young or adult mice. However, many interventions are less efficacious or even deleterious when initiated in aged animals. Here, we investigate the physiological, metabolic, and molecular consequences of consuming a diet with a 67% reduction of all amino acids (Low AA), or of isoleucine alone (Low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. We find that both diet regimens effectively reduce adiposity and improve glucose tolerance, which were benefits that were not mediated by reduced calorie intake. Both diets improve specific aspects of frailty, slow multiple molecular indicators of aging rate, and rejuvenate the aging heart and liver at the molecular level. These results demonstrate that Low AA and Low Ile diets can drive youthful physiological and molecular signatures, and support the possibility that these dietary interventions could help to promote healthy aging in older adults.

2.
Elife ; 122023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019262

RESUMO

Low-protein (LP) diets extend the lifespan of diverse species and are associated with improved metabolic health in both rodents and humans. Paradoxically, many athletes and bodybuilders consume high-protein (HP) diets and protein supplements, yet are both fit and metabolically healthy. Here, we examine this paradox using weight pulling, a validated progressive resistance exercise training regimen, in mice fed either an LP diet or an isocaloric HP diet. We find that despite having lower food consumption than the LP group, HP-fed mice gain significantly more fat mass than LP-fed mice when not exercising, while weight pulling protected HP-fed mice from this excess fat accretion. The HP diet augmented exercise-induced hypertrophy of the forearm flexor complex, and weight pulling ability increased more rapidly in the exercised HP-fed mice. Surprisingly, exercise did not protect from HP-induced changes in glycemic control. Our results confirm that HP diets can augment muscle hypertrophy and accelerate strength gain induced by resistance exercise without negative effects on fat mass, and also demonstrate that LP diets may be advantageous in the sedentary. Our results highlight the need to consider both dietary composition and activity, not simply calories, when taking a precision nutrition approach to health.


Assuntos
Dieta Rica em Proteínas , Treinamento de Força , Humanos , Animais , Camundongos , Controle Glicêmico , Caderinas , Hipertrofia
3.
Cell Metab ; 35(11): 1976-1995.e6, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939658

RESUMO

Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.


Assuntos
Isoleucina , Longevidade , Masculino , Feminino , Animais , Camundongos , Isoleucina/farmacologia , Promoção da Saúde , Camundongos Endogâmicos C57BL , Aminoácidos de Cadeia Ramificada/metabolismo
4.
Res Sq ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37790423

RESUMO

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

5.
Aging Biol ; 12022.
Artigo em Inglês | MEDLINE | ID: mdl-37186544

RESUMO

Calorie restriction (CR) promotes healthspan and extends the lifespan of diverse organisms, including mice, and there is intense interest in understanding the molecular mechanisms by which CR functions. Some studies have demonstrated that CR induces fibroblast growth factor 21 (FGF21), a hormone that regulates energy balance and that when overexpressed, promotes metabolic health and longevity in mice, but the role of FGF21 in the response to CR has not been fully investigated. We directly examined the role of FGF21 in the physiological and metabolic response to a CR diet by feeding Fgf21-/- and wild-type control mice either ad libitum (AL) diet or a 30% CR diet for 15 weeks. Here, we find that FGF21 is largely dispensable for CR-induced improvements in body composition and energy balance, but that lack of Fgf21 blunts CR-induced changes aspects of glucose regulation and insulin sensitivity in females. Surprisingly, despite not affecting CR-induced changes in energy expenditure, loss of Fgf21 significantly blunts CR-induced beiging of white adipose tissue in male but not female mice. Our results shed new light on the molecular mechanisms involved in the beneficial effects of a CR diet, clarify that FGF21 is largely dispensable for the metabolic effects of a CR diet, and highlight a sex-dependent role for FGF21 in the molecular adaptation of white adipose tissue to CR.

7.
Nutr Neurosci ; 25(11): 2369-2378, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467832

RESUMO

Objective: These experiments sought to characterize the effects of obesity propensity and obesogenic diet on locus coeruleus (LC) norepinephrine (NE) activity and determine the effects of obesity on LC neural responses to morphine withdrawal.Methods: In vivo single-unit LC electrophysiological activity was measured in obese prone (OP) and obese resistant (OR) male SD rats following high-fat (HFD: 45% fat) or low-fat (LFD; 10% fat) feeding. A separate cohort of LFD and HFD rats underwent in vivo LC recording on day 3 of spontaneous morphine withdrawal following an escalation dose paradigm (5-15 mg/kg; SQ twice daily).Results: OP (LFD: 34 cells/7 rats; HFD: 32 cells/6 rats) had higher spontaneous and tonic activity, and lower sensory-evoked activity compared with OR (LFD: 31 cells/6 rats; HFD: 41 cells/7 rats). Interacting effect of diet x strain status was observed on signal-to-noise ratio with OR-LFD having higher ratio than OP-LFD and OP-HFD. Morphine treatment decreased body weights. Withdrawal increased sensory-evoked rate in LFD (morphine; 20 cells/10 rats; saline 24 cells/6 rats) but not HFD (saline: 22 cells/7 rats; morphine: 21 cells/5 rats) rats. In a separate group of age-matched SD rats, a similar weight loss (5-7%) in response to the morphine did not alter sensory-evoked rate but decreased signal-to-noise ratio (Control: 22 cells/8 rats; Weight-matched: 23 cells/8 rats).Discussion: Taken together, our findings suggest that obesity and diet alter the sensory-evoked LC-NE neural responses, which could have implication for emotional stress and opioid-withdrawal behaviors.


Assuntos
Dieta Hiperlipídica , Locus Cerúleo , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Norepinefrina , Morfina/efeitos adversos , Ratos Sprague-Dawley , Obesidade
8.
Dev Cell ; 56(19): 2681-2682, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637703

RESUMO

Understanding how nutrient-sensitive signaling pathways regulate development and aging is an active area of research. In this issue of Developmental Cell,Zhu and colleagues (2021) identify a specific monomethylated branched-chain fatty acid that overrides nutrient deprivation signaling and activates mTORC1 in C. elegans and mammalian cells.


Assuntos
Caenorhabditis elegans , Ácidos Graxos , Animais , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR
9.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937450

RESUMO

Kv2.1 channels mediate cell death-enabling loss of cytosolic potassium in neurons following plasma membrane insertion at somatodendritic clusters. Overexpression of the carboxyl terminus (CT) of the cognate channel Kv2.2 is neuroprotective by disrupting Kv2.1 surface clusters. Here, we define a seven-amino acid declustering domain within Kv2.2 CT (DP-2) and demonstrate its neuroprotective efficacy in a murine ischemia-reperfusion model. TAT-DP-2, a membrane-permeable derivative, induces Kv2.1 surface cluster dispersal, prevents post-injurious pro-apoptotic potassium current enhancement, and is neuroprotective in vitro by disrupting the association of Kv2.1 with VAPA. TAT-DP-2 also induces Kv2.1 cluster dispersal in vivo in mice, reducing infarct size and improving long-term neurological function following stroke. We suggest that TAT-DP-2 induces Kv2.1 declustering by disrupting Kv2.1-VAPA association and scaffolding sites required for the membrane insertion of Kv2.1 channels following injury. We present the first evidence of targeted disruption of Kv2.1-VAPA association as a neuroprotective strategy following brain ischemia.


Assuntos
AVC Isquêmico , Canais de Potássio Shab , Animais , Camundongos , Neurônios/fisiologia , Neuroproteção , Potássio/metabolismo , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo
10.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854248

RESUMO

Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.


Assuntos
AVC Isquêmico/prevenção & controle , Terapia de Alvo Molecular/métodos , Canais de Potássio Shab/metabolismo , Animais , Ensaios Clínicos como Assunto , Terapia Combinada , Humanos , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Trombectomia
11.
Front Psychol ; 10: 1966, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551861

RESUMO

Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.

12.
Proc Natl Acad Sci U S A ; 116(31): 15696-15705, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308225

RESUMO

The neuronal cell death-promoting loss of cytoplasmic K+ following injury is mediated by an increase in Kv2.1 potassium channels in the plasma membrane. This phenomenon relies on Kv2.1 binding to syntaxin 1A via 9 amino acids within the channel intrinsically disordered C terminus. Preventing this interaction with a cell and blood-brain barrier-permeant peptide is neuroprotective in an in vivo stroke model. Here a rational approach was applied to define the key molecular interactions between syntaxin and Kv2.1, some of which are shared with mammalian uncoordinated-18 (munc18). Armed with this information, we found a small molecule Kv2.1-syntaxin-binding inhibitor (cpd5) that improves cortical neuron survival by suppressing SNARE-dependent enhancement of Kv2.1-mediated currents following excitotoxic injury. We validated that cpd5 selectively displaces Kv2.1-syntaxin-binding peptides from syntaxin and, at higher concentrations, munc18, but without affecting either synaptic or neuronal intrinsic properties in brain tissue slices at neuroprotective concentrations. Collectively, our findings provide insight into the role of syntaxin in neuronal cell death and validate an important target for neuroprotection.


Assuntos
Encéfalo/metabolismo , Fármacos Neuroprotetores , Canais de Potássio Shab/metabolismo , Sintaxina 1/metabolismo , Animais , Proteínas Munc18/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ratos , Proteínas SNARE/metabolismo
13.
J Pharmacol Exp Ther ; 367(2): 348-355, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190339

RESUMO

We present the design of an innovative molecular neuroprotective strategy and provide proof-of-concept for its implementation, relying on the injury-mediated activation of an ectopic gene construct. As oxidative injury leads to the intracellular liberation of zinc, we hypothesize that tapping onto the zinc-activated metal regulatory element (MRE) transcription factor 1 system to drive expression of the Kv2.1-targeted hepatitis C protein NS5A (hepatitis C nonstructural protein 5A) will provide neuroprotection by preventing cell death-enabling cellular potassium loss in rat cortical neurons in vitro. Indeed, using biochemical and morphologic assays, we demonstrate rapid expression of MRE-driven products in neurons. Further, we report that MRE-driven NS5A expression, induced by a slowly evolving excitotoxic stimulus, functionally blocks injurious, enhanced Kv2.1 potassium whole-cell currents and improves neuronal viability. We suggest this form of "on-demand" neuroprotection could provide the basis for a tenable therapeutic strategy to prevent neuronal cell death in neurodegeneration.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Neuroproteção/efeitos dos fármacos , Canais de Potássio Shab/metabolismo , Proteínas não Estruturais Virais/metabolismo , Zinco/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Hepatite C/virologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Potássio/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos
14.
J Neurosci ; 37(23): 5648-5658, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483976

RESUMO

The voltage-gated K+ channel Kv2.1 has been intimately linked with neuronal apoptosis. After ischemic, oxidative, or inflammatory insults, Kv2.1 mediates a pronounced, delayed enhancement of K+ efflux, generating an optimal intracellular environment for caspase and nuclease activity, key components of programmed cell death. This apoptosis-enabling mechanism is initiated via Zn2+-dependent dual phosphorylation of Kv2.1, increasing the interaction between the channel's intracellular C-terminus domain and the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein syntaxin 1A. Subsequently, an upregulation of de novo channel insertion into the plasma membrane leads to the critical enhancement of K+ efflux in damaged neurons. Here, we investigated whether a strategy designed to interfere with the cell death-facilitating properties of Kv2.1, specifically its interaction with syntaxin 1A, could lead to neuroprotection following ischemic injury in vivo The minimal syntaxin 1A-binding sequence of Kv2.1 C terminus (C1aB) was first identified via a far-Western peptide screen and used to create a protherapeutic product by conjugating C1aB to a cell-penetrating domain. The resulting peptide (TAT-C1aB) suppressed enhanced whole-cell K+ currents produced by a mutated form of Kv2.1 mimicking apoptosis in a mammalian expression system, and protected cortical neurons from slow excitotoxic injury in vitro, without influencing NMDA-induced intracellular calcium responses. Importantly, intraperitoneal administration of TAT-C1aB in mice following transient middle cerebral artery occlusion significantly reduced ischemic stroke damage and improved neurological outcome. These results provide strong evidence that targeting the proapoptotic function of Kv2.1 is an effective and highly promising neuroprotective strategy.SIGNIFICANCE STATEMENT Kv2.1 is a critical regulator of apoptosis in central neurons. It has not been determined, however, whether the cell death-enabling function of this K+ channel can be selectively targeted to improve neuronal survival following injury in vivo The experiments presented here demonstrate that the cell death-specific role of Kv2.1 can be uniquely modulated to provide neuroprotection in an animal model of acute ischemic stroke. We thus reveal a novel therapeutic strategy for neurological disorders that are accompanied by Kv2.1-facilitated forms of cell death.


Assuntos
Apoptose/efeitos dos fármacos , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Feminino , Masculino , Bloqueadores dos Canais de Potássio/administração & dosagem , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/metabolismo , Ratos , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
15.
Neurosci Lett ; 609: 48-52, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472706

RESUMO

Inhibiting injury-induced increases in outward K(+) currents is sufficient to block cell death in cortical neuronal injury models. It is now known that apoptosis is facilitated in hepatocytes by the same K(+) channel as in cortical neurons, namely, the delayed rectifier K(+) channel Kv2.1. The hepatitis C virus (HCV) protein NS5A prevents the apoptosis-enabling loss of intracellular potassium by inhibiting Kv2.1 function and thus blocking hepatocyte cell death. Critically, neurons expressing NS5A1b (from HCV genotype 1b), but not NS5A1a, can be protected from lethal injurious stimuli via a block of Kv2.1-mediated potassium currents. Here, we identify a key component unique to NS5A1b, which is necessary for restricting Kv2.1 currents and establishing neuroprotection. By comparing the sequence differences between NS5A1b and 1a we identify putative casein kinase 2 (CK2) phosphorylation regions unique to the 1b genotype. We show that selective inhibition of CK2 in cortical neurons results in loss of NS5A1b's ability to depress outward potassium currents, and, surprisingly, potentiates currents in non-NS5A-expressing cells. As such, our results suggest that NS5A1b-mediated inhibition of Kv2.1 function is critically dependent on its phosphorylation status at genotypic-specific CK2-directed residues. Importantly, inhibiting NS5A viral replicative function with the novel HCV drug Ledipasvir does not impair the ability of this protein to block Kv2.1 function. This suggests that the modulation of NS5A function by CK2 may be a component of HCV unique to the regulation of apoptosis.


Assuntos
Caseína Quinase II/metabolismo , Córtex Cerebral/metabolismo , Canais de Potássio Shab/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Feminino , Fluorenos/farmacologia , Vetores Genéticos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Ratos Sprague-Dawley , Proteínas não Estruturais Virais/genética
16.
PLoS One ; 9(4): e93610, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695494

RESUMO

Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable foods dampen the stress neuraxis.


Assuntos
Encéfalo/metabolismo , Bulimia , Comportamento Alimentar/efeitos dos fármacos , Fluoxetina/análogos & derivados , Norepinefrina/metabolismo , Animais , Peso Corporal , Ingestão de Energia , Fluoxetina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...